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Extortion under uncertainty: Zero-determinant strategies in noisy games

Dong Hao,1 Zhihai Rong,1 and Tao Zhou1,2,*

1CompleX Lab, Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
2Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China

(Received 1 February 2015; published 11 May 2015)

Repeated game theory has been one of the most prevailing tools for understanding long-running relationships,
which are the foundation in building human society. Recent works have revealed a new set of “zero-determinant”
(ZD) strategies, which is an important advance in repeated games. A ZD strategy player can exert unilateral
control on two players’ payoffs. In particular, he can deterministically set the opponent’s payoff or enforce
an unfair linear relationship between the players’ payoffs, thereby always seizing an advantageous share of
payoffs. One of the limitations of the original ZD strategy, however, is that it does not capture the notion of
robustness when the game is subjected to stochastic errors. In this paper, we propose a general model of ZD
strategies for noisy repeated games and find that ZD strategies have high robustness against errors. We further
derive the pinning strategy under noise, by which the ZD strategy player coercively sets the opponent’s expected
payoff to his desired level, although his payoff control ability declines with the increase of noise strength.
Due to the uncertainty caused by noise, the ZD strategy player cannot ensure his payoff to be permanently
higher than the opponent’s, which implies dominant extortions do not exist even under low noise. While we
show that the ZD strategy player can still establish a novel kind of extortions, named contingent extortions,
where any increase of his own payoff always exceeds that of the opponent’s by a fixed percentage, and the
conditions under which the contingent extortions can be realized are more stringent as the noise becomes
stronger.
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I. INTRODUCTION

Repeated games have been representative to explore the
agents’ long-run relationships, which help us in understanding
how cooperation and competition might arise among agents
with selfish objectives. Extensive literatures have by now
utilized repeated games as a basic component to analyze
economic behaviors, political science, evolutionary dynamics,
as well as multiagent systems [1]. It has been commonly
accepted that in such games there is no simple ultimatum
strategy whereby one player can simply occupy an unfair
share of the payoffs. However, Press and Dyson’s discovery of
“zero-determinant” (ZD) strategies illuminates a new starting
point [2]. They show that in an iterated prisoner’s dilemma,
it is possible for a player (named the ZD player for short)
to unilaterally enforce a linear relationship between his and
the opponent’s payoff, thereby deterministically setting the
expected payoff of the opponent to a fixed value or ensuring
that, when the opponent tries to increase his payoff, he
will always increase the ZD player’s payoff even more. The
discovery of ZD strategies is a milestone along the way to
fundamentally understanding the underlying norms of social
interactions and how different strategies correlate with each
other [3,4]. It provides us with a powerful but succinct
framework for motivating and sustaining the cooperation
required for any society, as well as for controlling the damage
done by unscrupulous or mischievous agents.

ZD strategies have thus attracted considerable attention and
been incorporated successfully into a wide array of research,
ranging from theoretical game research to real-world experi-
mental studies [5]. Among the subsequent research, Roemheld
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generalizes ZD strategies for all symmetric bimatrix games as
well as for the “battle of the sexes,” which is the most common
example for asymmetric games [6]. Akin explores a broader
space of strategies by extending Press-Dyson theorem and
obtains cooperation-enforcing good strategies [7]. Thereafter,
Stewart and Plotkin, as well as Hilbe et al., identify the inter-
section of ZD strategies and good strategies, named generous
ZD strategies, which not only control the payoffs but also
cooperate with others and forgive defecting opponents, leading
the game towards a win-win situation [8,9]. Chen and Zinger
analyze the robustness of ZD strategies against evolutionary
players and prove that there always exist evolutionary paths
for the ZD player to obtain the maximum payoff [10]. Press
and Dyson’s work can be further generalized to multiplayer
ZD strategies for investigating various social dilemmas, and
new features and constraints related to participant number
and payoff structure have been revealed and the impact of
ZD alliance in multiplayer games has been studied [11,12].
Furthermore, there is also extensive work investigating the
significance of ZD strategies in evolutionary game theory
and in social networks [8,9,12–18]. Although initially the
evolutionary instability was found for extortion strategies [14],
later it is proved that the generous strategies finally dominate in
the population and are stable in an evolutionary sense [8,15].
The above theoretical studies also have been implemented
in real-world social experiments, and it is confirmed that
extorting others has limited prospects and, in the long run,
generosity is more profitable [13].

By now, how the ZD strategies perform in realistic noisy
games is still an open problem. As in Stewart and Plotkin’s
commentary to Press and Dyson’s work [3], one of the
key questions is as follows: How do ZD strategies fare in
iterated games in the presence of noise? Since stochastic
perturbations due to observation errors, action mistakes,
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biological mutations, and other chance events are common
and inevitable in reality, it is of great importance to extensively
investigate the strategies and solutions in games theory at the
presence of noise. However, the majority of known results on
game theory [19], as well as those related to ZD strategies [5],
are obtained in a perfect environment without any noise.
Actually, the analyses of noisy repeated games have been
long-standing challenges and are at the cutting edge of research
on game theory and social interactions [19–26]. The errors in
noisy repeated games usually fall into two categories [20]. The
first kind is where players’ actions are often observed with
errors, which can be called perception errors: Someone who
claims they worked hard or that they were too busy to give help
may or may not be telling the truth; similarly, awkward results
sometimes accidentally follow good behaviors [21]. The
second kind is where players may wrongly take an action. This
is categorized into implementation errors (or action errors in
the literature): One player has an intended action but may acci-
dentally choose another action due to interferences; this is also
described by the well-known notion of “trembling hands” [22].

To explore noisy games, which is new territory for ZD
strategies, we propose a general framework of ZD strategies in
noisy repeated games and show the implementable for a uni-
lateral payoff control. Since repeated games with perception
errors are the most stringent case [1,19], our analysis focuses
primarily on this scenario, and it can be easily extended to
repeated games with implementation errors. It is found that
ZD strategies present strong robustness against noise. Even
in environments with perception or implementation errors, a
player can still enforce a linear relationship between the two
players’ payoffs. Under noisy repeated games, we classify
the ZD strategies into three subsets, (i) pinning strategies,
(ii) contingent extortion strategies, and (iii) dominant extortion
strategies. Following the pinning strategy, the ZD player can
unilaterally set the opponent’s payoff to his or desirable
level, although the difficulty for realizing such payoff control
increases as the noise becomes stronger. Furthermore, we
prove that since the noise brings uncertainty and risk to the
ZD player, he cannot perfectly secure his payoff to be always
greater than that of the opponent. That is to say, dominant
extortions do not exist even when the noise strength is low.
Nevertheless, the ZD player can still extort the opponent and
grab the achievements of him, in the sense that as long as
the opponent tries to improve his payoff, he will improve the
ZD player’s payoff even more, and the opponent can only
maximize his payoff by fully cooperating. At that point, both
players’ payoffs are maximized but the ZD player outperforms
the opponent. Using such a strategy, the ZD player can extort
the opponent, but he also suffers a risk of being outperformed
by the opponent. Therefore we call such strategy the contingent
extortion strategy. Our analyses of extortion in noisy games
imply that errors expose the ZD player to uncertainty and
risk of losing, while the mischievous manipulation and the
unusual control still stubbornly persist. The results of our study
can be utilized both to propose a generalized framework for
the ZD strategy paradigm that has characterized much of the
recent literatures and to provide a unilateral payoff control
scheme for a larger class of noisy repeated games where
payoff control is of great significance but has barely been
studied.

II. NOISY REPEATED GAME

Consider two players engaged in an iterated prisoner’s
dilemma (IPD) game. In each stage, each player i ∈ {X,Y }
takes an action ai ∈ {C,D}. Each player cannot directly see
what action the opponent has taken but only observes a private
signal ωi ∈ {g,b}, where g and b denote good and bad signals,
respectively. Each player’s signal ωi is a stochastic variable,
affected not only by the two players’ actions but also by
the noises (random errors) from the environment. Given the
actions, every possible signal profile occurs with a positive
probability π (ω|a), where ω = {ωX,ωY } and a = {aX,aY } are
the observed signal profile and the action profile, respectively.
In each stage, if player Y chooses aY = C (or aY = D) but X
observes ωX = b (or ωX = g), it means an error occurs. More
precisely, denote ε as the commonly known probability that
an error occurs to exactly one player and denote ξ as the prob-
ability that errors occur to both players. Then the probability
that neither player has an error is 1 − 2ε − ξ . In particular,
this setting captures both the case with independent errors
and the case with correlated errors. If both players take
action C, then π (g,g|CC) = 1 − 2ε − ξ , π (g,b|CC) =
π (b,g|CC) = ε, and π (b,b|CC) = ξ . The following tables
summarize the signal distributions under all action profiles.
Based on the action and privately observed signal, for a player
X, his private outcome in each stage game is a tuple (aX,ωX) ∈
{Cg,Cb,Dg,Db}. The signal distributions for different action
profiles are summarized in Table I. Note that this differs
from games without noise, where both players’ outcomes are
identical and are just action profiles.

Since the stochastic changes of the environment, as well
as the opponent’s action, is jointly involved in the signals,
the realized payoff for each player depends only on the
action he chose and the signal he received, denoted as
ui(ai,ωi) [1,19,23]. Assume that the realized stage pay-
off follows the prisoner’s dilemma, such that ui(C,g) = 1,
ui(C,b) = −L, ui(D,g) = 1 + G, and ui(D,b) = 0, where
L and G are positive variables. According to the general
framework in Ref. [23], in each stage, player i’s expected
payoff when two players have an action profile a is derived as

fi(a) =
∑

ω

ui(ai,ωi)π (ω|a), (1)

TABLE I. Signal distributions for different action profiles.

CC ωY = g ωY = b

ωX = g 1 − 2ε − ξ ε

ωX = b ε ξ

DC ωY = g ωY = b

ωX = g ε 1 − 2ε − ξ

ωX = b ξ ε

CD ωY = g ωY = b

ωX = g ε ξ

ωX = b 1 − 2ε − ξ ε

DD ωY = g ωY = b

ωX = g ξ ε

ωX = b ε 1 − 2ε − ξ
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such that fi(a is the expected value over all possible signals,
dependent on the two players’ actions. When players cooperate
with each other, the errors may occur to both players, and the
realized stage payoff will be −L. However, when ε and ξ

are small, the expected payoff over different possible signals
may still be high. The expected payoffs under different action
profiles CC, CD, DC, and DD are denoted as RE , SE ,
TE , and PE , which can be derived according to Eq. (1) as
RE = 1 − (L + 1)(ε + ξ ), SE = −L + (1 + L)(ε + ξ ), TE =
(1 + G)(1 − ε − ξ ), and PE = (1 + G)(ε + ξ ), respectively.
Then player X’s expected stage payoff vector is denoted as
UX = (RE,SE,TE,PE) and player Y’s is denoted as UY =
(RE,TE,SE,PE).

We concentrate on the memory-one strategies where each
player sets his strategy only according to the single previous
outcome [2,24,27]. Denote the probabilities that player X
will cooperate under his previous outcomes Cg, Cb, Dg,
and Db as p1, p2, p3, and p4 and the probabilities that Y
will cooperate under his previous outcomes Cg, Cb, Dg,
and Db are q1, q2, q3, and q4. The joint actions of the two
players are the states of the game, and the two players’
probabilistic strategies as well as the noise structure jointly
determine the transition rule of the states. Note that the
observation errors only change the transition probabilities
but never change the real state space of the game, which
is still {CC,CD,DC,DD}. For example, if the old state is
CC, the probability that the state transits to a new joint
state CD will be (1 − 2ε − ξ )p1(1 − q1) + εp1(1 − q2) +
εp2(1 − q1) + ξp2(1 − q2), where (1 − 2ε − ξ )p1(1 − q1) is
the probability that both players observe correct signals and
player X takes action C while player Y takes action D in the
new stage; εp1(1 − q2) and εp2(1 − q1) are the probabilities
one player has an observation error and player X takes C

and player Y takes D; and ξp2(1 − q2) is the probability that
both players have observation errors and player X takes C and
player Y takes D. Let τ = 1 − 2ε − ξ , the derivation of the
transition probability from state CC to state CD is depicted
in Fig. 1. This figure illustrates that the noise decomposes the

CC

Cg Cg

Cg Cb

Cb Cg

Cb Cb

CD

gb

bg

1p q

1p q

1p q

1p q

gg
(1 )

( )

bb( )

( )

FIG. 1. (Color online) Illustration of the transition from state
(joint action) CC to CD. The green color shows the real action
and observation of player X while the red color depicts that of player
Y. The big nodes denote the action profile, which is the real states of
the game. The small nodes denote the combination of one player’s
action and observation, which are one player’s private outcomes.

FIG. 2. Transition matrix of a noisy repeated game.

state CC into four combinations of private outcomes, namely
(Cg,Cg), (Cg,Cb), (Cb,Cg), and (Cb,Cb). Following in the
same way, the state transition matrix M of the noisy repeated
game is thus calculated as the matrix in Fig. 2. We can see from
this transition matrix, although it becomes more complex, it is
still a stochastic matrix.

III. ZD STRATEGIES UNDER NOISE

Let ut be the probability distribution over the game’s
state space {CC,CD,DC,DD} at stage t . The probability
distributions follow the transition rule such that ut+1 =
ut × M. The stationary distribution for M is a vector v
such that vTM = vT. Introducing M′ = M − I into the above
equation yields vT M′ = 0. According to Cramer’s rule, for
any matrix M′ and its adjugate matrix Adj(M′), the equation
Adj(M′)M′ = 0 holds. Therefore from these two equations
we know that every row of Adj(M′) is proportional to the
stationary distribution vector v. Changing the last column of
M′ into X’s stage payoff vector (RE,SE,TE,PE), we get a new
matrix M̃. Then, using Laplace expansion on the last column of
M̃, we have det(M̃) = REN1 + SEN2 + TEN3 + PEN4. The
variables N1, N2, N3, and N4 are just the minors corresponding
to RE , SE , TE , and PE in the last column of M̃, respectively.
The fourth row of Adj(M̃) is calculated from the first three
columns of M̃ and is always proportional to v. Therefore X’s
expected payoff can be calculated by using det(M̃). Adding
the first column into the second and the third columns gives us
a new form of this determinant as in Eq. (2),

det(M̃) =

∣∣∣∣∣∣∣

· · · μp1 + ηp2 − 1 μq1 + ηq2 − 1 RE

· · · ηp1 + μp2 − 1 μq3 + ηq4 SE

· · · μp3 + ηp4 ηq1 + μq2 − 1 TE

· · · ηp3 + μp4 ηq3 + μq4 PE

∣∣∣∣∣∣∣
.

(2)

In this determinant, μ = 1 − ε − ξ and η = ε + ξ . The first
columns is omitted because we only need to analyze the
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relationship within the last three columns. More importantly,
we can see that in this determinant, the second column is solely
controlled by X and the third column is solely controlled by
Y. We record this new format of determinant as D (p,q,UX).
Then player X’s normalized payoff score under stationary state
is derived as

sX = v · UX

v · 1
= D(p,q,UX)

D(p,q,1)
. (3)

Similarly, replacing the last column of det(M̃) by player Y’s
stage expected payoff vector, player Y’s normalized payoff
score is

sY = v · UY

v · 1
= D (p,q,UY )

D (p,q,1)
. (4)

A linear combination of these two scores with coefficients α,
β, and γ gives us

αsX + βsY + γ = D (p,q,αUX + βUY + γ UZ)

D (p,q,1)
. (5)

If player X can set his strategy p delicately and
make the second column of this determinant satisfy
p̃ = αUX + βUY + γ UZ , then the determinant’s value
D(p,q,αUX + βUY + γ UZ) = 0, which indicates that X can
unilaterally establish a linear relationship between X’s and Y’s
payoff scores, such that αsX + βsY + γ = 0. Such a linear
relationship also requires a feasible solution to the following
linear equation set:

μp1 + ηp2 − 1 = αRE + βRE + γ,

ηp1 + μp2 − 1 = αSE + βTE + γ,

μp3 + ηp4 = αTE + βSE + γ,

ηp3 + μp4 = αPE + βPE + γ. (6)

If this system of linear equations has feasible solutions, then
it will be possible for player X to adjust p1,p2,p3, and p4

properly to form a linear relationship between his and the
opponent’s payoffs. Since the above unilateral control strategy

is realized by setting a determinant to zero, we call this the zero-
determinant strategy under noise (NZD strategy for short).
Note that when there is no noise (i.e., ε = 0 and ξ = 0), the
NZD strategy degenerates to the original ZD strategy [2].

IV. PINNING UNDER UNCERTAINTY

One specialization of ZD strategies can unilaterally set
the opponent’s payoff to a deterministic value [2]. Similar
strategies were earlier found by Boerlijst, Nowak, and Sig-
mund [28]. We call such strategies the pinning strategies. Even
in noisy environments, an NZD strategy can establish a pinning
property, although the conditions are more strict. If player X
chooses proper p1, p2, p3, and p4, such that p̃ = βUY + γ 1
(set α = 0), then the following linear equation without player
X’s payoff involved can be formed:

βsY + γ = 0. (7)

The above p̃ leads to the following system of linear equations,
which depicts the constrains for the pinning strategies under
noise:

μp1 + ηp2 − 1 = βRE + γ,

ηp1 + μp2 − 1 = βTE + γ,
(8)

μp3 + ηp4 = βSE + γ,

ηp3 + μp4 = βPE + γ.

From these four equations we have β = (μ−η)(p1−p2)
RE−TE

and

γ = p1 − 1 + β
ηTE−μRE

μ−η
. There are six variables (p1, p2,

p3, p4, β, and γ ) in four equations, so we have only two
independent free variables. Let p1 and p4 be these two
variables, and then p2 and p3 can be rewritten as

p2 = p1[μ(TE − PE) + η(SE −RE)] − (1 + p4)(TE − RE)

μ(RE − PE) + η(SE − TE)
,

p2 = (1 − p1)(PE − SE) + p4[μ(RE − SE) + η(PE − TE)]

μ(RE − PE) + η(SE − TE)
.

(9)
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FIG. 3. (Color online) Feasible region of pinning strategies and the corresponding pinned payoffs of player Y under different noises. In
each subfigure, the shaded area on the p1-p4 plane illustrates the feasible region of pinning strategies. The corresponding pinned payoffs are
shown as points on the colored surface. The stage game payoffs are calculated by using G = 0.5 and L = 0.5, thus realized stage payoffs are
ui(C,g) = 1,ui(C,b) = −0.5,ui(D,g) = 1.5 and ui(D,b) = 0. The feasible region of pinning strategies as well as the range of pinned payoffs
shrink as the noise strength increases. In (a), the game has no noise, thus the expected stage payoffs are RE = 1, SE = −0.5, TE = 1.5, and
PE = 0. In (b) the game has low noise and the expected stage payoffs are RE = 0.91, SE = −0.41, TE = 1.4, and PE = 0.09. In (c) there is
high noise and the expected stage payoffs are RE = 0.79, SE = −0.29, TE = 1.29, and PE = 0.21.
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If and only if the NZD player generates his p2 and p3 by
following the above formulas, he can pin the expected payoff
of the opponent. Representing both β and γ by p1 and p4

and substituting them back into Eq. (7), we finally get the
opponent’s payoff, as

sY = (1 − p1)(μPE − ηSE) + p4(μRE − ηTE)

(1 − p1 + p4)(μ − η)
. (10)

It is worth noting that, besides the signal distribution, sY is
only determined by two components in X’s strategic vector,
which are p1 and p4. By inspecting the payoff of Y, we found
that in the perfect environment (ε = 0 and ξ = 0), player Y’s
payoff degenerates to sY = (1−p1)PE+p4RE

(1−p1)+p4
.

From Eqs. (8), the only constrain for the existence of
pinning strategies is the probabilistic constrain for p1, p2, p3,
and p4 (i.e., 0 � pi � 1). We numerically checked the feasible
region and the corresponding pinned payoffs of Y, with noise
strength ranging from no noise to very strong noise. Since
p2 and p3 can be represented by p1 and p4, we only show
the feasible region strategies in the p1-p4 plane. As shown
in Fig. 3(a), the pinned payoff under the perfect environment
arches across whole expected payoff space, ranging from PE

to RE . However, as the noise is introduced, on the one hand, the
feasible region for pinning strategies shrinks, which indicates
the noise brings additional constrains for establishing NZD
strategies. On the other hand, the range of the pinned payoff
also narrows, showing that the NZD player’s power of payoff
control will be weakened by the noise. In Fig. 3(b), when a
weak noise is introduced, the minimum pinned payoff is higher
than PE and the maximum pinned payoff is lower than RE ,
and as shown in Fig. 3(c), with the noise strength, the range
of the pinned payoff continuously reduces to a very narrow
one.

V. EXTORTION UNDER UNCERTAINTY

An NZD strategy in Eqs. (6) can be equivalently rewritten
as

p̃ = ϕ[(UX − l1) − χ (UY − l1)], (11)

where ϕ, χ , and l are free parameters. The only usage of ϕ

is to ensure the probabilities to locate in [0,1]. It is worth
noting that if l � PE , then the probability constraints cannot
be satisfied and NZD strategies do not exist. Thus we only
need to investigate different cases when l � PE . In the case
(i) χ → ∞, p is a pinning strategy. In the case (ii) χ > 1
and l � PE , player X can ensure that, when player Y tries to
increase his payoff, he will increase X’s even more, and X’s
increase of payoff exceeds that of Y by a fixed percentage χ . In
addition, Y can only maximize his payoff by fully cooperating
(q = 1). Therefore, if player X chooses a p with χ > 1, then
X can always extort Y since Y’s effort will benefit X more
than himself. In the case (iii) χ > 1 and l = PE , player X not
only ensures his payoff increment is χ -fold of Y’s but also
guarantees that his absolute payoff is higher than Y’s and,
consequently, dominates in the game.

We distinguish the second and the third cases and call
the former the contingent extortion strategy and the latter the
dominant extortion strategy. A dominant extortion is a secure
strategy, in the sense that the NZD player using such a strategy

not only grabs the achievement of the opponent but also always
outperforms the opponent. On the contrary, using a contingent
extortion, although the NZD player can guarantee a higher
increment of payoff, he cannot secure that he can always
outperform the opponent, which means the NZD players’
outcome of the game is contingent. The word “contingent”
captures such uncertainty that the NZD player may or may not
dominate in payoff, even though he can always obtain a higher
payoff increment than the opponent. It is worth noting that
any dominant extortion is a special and most stringent case
of contingent extortions, and any contingent extortion is an
instantiation of NZD strategies. Essentially, the uncertainty of
extortion is quantitatively affected by the parameter l, which
can be seen as the baseline of extortion. In noisy games, the
contingency or uncertainty is caused by the perception or
observation errors, thus, in such games, l can be defined as
a function of noise structure.

Although the dominant extortion strategies are found
widely existing in games without noise [2], we prove that
in noisy repeated games, the dominant extortion strategies do
not exist. To enforce a dominant extortion strategy, according
to Eq. (5), the following equation set is required to be satisfied
when l = PE :

μp1 + ηp2 − 1 = ϕ[(RE − l) − χ (RE − l)],

ηp1 + ηp2 − 1 = ϕ[(SE − l) − χ (TE − l)],
(12)

μp3 + ηp4 = ϕ[(TE − l) − χ (SE − l)],

ηp3 + μp4 = ϕ[(PE − l) − χ (PE − l)].

However, when l = PE , the third and the fourth equations
cannot be satisfied simultaneously. Intuitively, the lack of
the dominant extortion strategy in noisy repeated games is
because the errors introduce stochasticity and uncertainty
into the payoffs and, consequently, have a negative impact
on the accuracy of player X’s payoff-based strategy setting.
Therefore, the NZD player faces a fundamental trade-off
between the payoff control ability and the payoff dominance.
Such a trade-off is similar to the relationship between risk
dominance and payoff dominance, which has been discussed
in pioneering works by Harsanyi and Selten [29]. Thus, in
a noisy environment, to regain the payoff control ability, the
extortioner needs to relax the extortion baseline from PE to
PE + , which, on the contrary, increases the risk for him to
lose in payoff. We represent the contingent extortion strategy
as a (χ,)-extortion strategy, where χ defines the extortion
rate while  = l − PE defines the distance between the weak
and dominant extortion strategies that can be considered as the
generosity [8]. When  is small, it is still very likely (though
not necessarily so) for player X to always get higher payoffs
than player Y; however, it will be difficult for him to establish
an extortion on player Y’s payoff. A larger  indicates that
player X offers more opportunity for the opponent to win
in payoff but correspondingly obtains higher possibility for
himself to control the opponent’s payoff. Therefore, in order
to realize a payoff control while reducing the risk of losing,
it is of great importance for the NZD player to design his
strategy with a proper extortion ratio χ and a sufficiently small
distance .
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FIG. 4. (Color online) Feasible regions for contingent extortion
strategies under different noise strengths. The black curves and red
curves depict the lower bounds and upper bounds of  versus χ ,
respectively. The blue dashed lines show the values of RE − PE .
In all subfigures, player X’s realized payoff is set as uX(C,g) =
1, uX(C,b) = −0.5, uX(D,g) = 2, and uX(D,b) = 0. The expected
stage payoffs RE , SE , TE , and PE are calculated by Eq. (1). For
the noise-free case (a), the lower bound of  is always 0 and the
upper bound of  is always 1, indicating that NZD strategies always
exist for any χ . In the low-noise case (b), the contingent extortion
strategies with small χ (χ < 1.78) do not exist, and the feasible range
of  becomes larger as the increase of χ after it exceeds 1.78. The
lower bound approaches a value greater than 0 while the upper bound
approaches a value smaller than 0.79. In (c) there is a medium amount
of noise, and in (d) there is much more noise. Comparing (a), (b),
(c), and (d), it is found that the feasible region of contingent extortion
strategies dramatically shrinks with the increase of noise strength.

According to the analysis above, to get a contingent
extortion strategy under noise, the following vector equation
is required:

p̃ = ϕ{[UX − (PE + )1] − χ [UY − (PE + )1]}, (13)

which can be expanded to:

p1 = 1 − ϕ
1

τ − r
[F1 − χF2] + ϕ(χ − 1),

p2 = 1 + ϕ
1

τ − r
[J1 − χJ2] + ϕ(χ − 1),

(14)

p3 = ϕ
(τ + ε)

τ − r
[TE − PE − χ (SE − PE)] + ϕ(χ − 1),

p4 = −ϕ
(ε + r)

τ − r
[TE − PE − χ (SE − PE)] + ϕ(χ − 1),

where F1 = μRE − ηSE − (μ − η)PE , F2 =
μRE − ηTE − (μ − η)PE , J1 = ηRE − μSE + (μ − η)PE ,
and J2 = ηRE − μTE + (μ − η)PE . As shown in Fig. 4,
we numerically checked the feasible region of contingent
extortion strategies by exploring the whole space of  versus
a different extortion ratio χ . One can see that the distance 

has both a lower bound and an upper bound, with the former
positively correlated with the noise strength and the latter

negatively correlated with the noise strength. Combining
these two effects, the feasible range of  shrinks while the
noise becomes stronger. In addition, increasing the lower
bound suggests that the NZD player should relax its extortion
baseline l and move it farther from PE as the noises strength
increases.

When player X adopts a contingent extortion strategy,
the payoffs of players X and Y follow the following linear
relationship:

sX − (PE + ) = χ [sY − (PE + )]. (15)

Since in the prisoner’s dilemma TE > RE > PE > SE , X’s
payoffs when Y chooses action C (TE or RE) are always
larger than his payoffs when Y chooses action D (PE or
SE). The same result holds when player Y mixes his action.
Thus whatever strategy X takes, its expected payoff sX will be
maximized when Y fully cooperates (q = 1). When X takes
contingent extortion strategy, since sX and sY follow a linear
relationship, sY will also be maximized when sX reaches its
maximum. Therefore, both sX and sY are maximized when
Y fully cooperates. Substituting q1 = q2 = q3 = q4 = 1 into
det(M̃), the determinant becomes

det (p,1,UX) =

∣∣∣∣∣∣∣

1 − μp1 + ηp2 0 0 RE

ηp1 + μp2 −1 1 SE

μp3 + ηp4 0 0 TE

ηp3 + μp4 0 1 PE

∣∣∣∣∣∣∣
. (16)

Making Laplace expansion on the fourth column, we have the
normalized payoff for player X as

sX = det(p,1,UX)

det(p,1,1)
,

which finally leads to

sX = 1

C
χ [RE(TE − SE) − PE(TE − RE)]

− 1

C
(χ − 1)(TE − RE) + 1

C
PE(TE − RE) (17)

and

sY = 1

C
χP (RE − SE) + 1

C
(χ − 1)(RE − SE)

+ 1

C
[SE(PE − RE) + PE(TE − RE)], (18)

where C = (TE − RE) + χ (RE − SE) > 0. For instance, if
(RE,SE,TE,PE) = (3,0,5,1), we have

sX = 2 + 13χ − 2(χ − 1)

2 + 3χ
, (19)

and, accordingly, the payoff for player Y is

sY = 12 + 3χ + 3(χ − 1)

2 + 3χ
. (20)

In a word, on the one hand, the extortion strategies are
still feasible in a noisy environment, which indicates it is still
possible for the NZD player to ensure that when the opponent
tries to improve his payoff, he will improve the NZD player’s
even more. And the opponent will maximize his own payoff
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by fully cooperating, where the NZD player’s payoff is also
maximized. Thus the NZD player can still enforce a contingent
extortion on his opponent. However, on the other hand, the
uncertainty in the noisy environment has abated the power of
extortion, in the sense that the extortioner cannot guarantee
his payoff always to be higher than the opponent’s and the
dominant extortion strategies do not exist. The baseline for
contingent extortion strategies should have a distance to PE ,
and the lower bound of the distance has a positive correlation
with noise strength. Under the same extortion ratio χ , the
payoffs for the extortioner and for the opponent under different
noise strengths varies. In Eq. (17) we can see sX may decline as
noise strength increases. On the contrary, in Eq. (18), sY may
increase as noise strength increases. Therefore, under a certain
noise strength (which results in a reasonably large distance),
it is possible for sY to outperform sX. These indicate that, in
noisy environments, when an NZD player wishes to extort the
opponent and control the payoffs, there is an increased risk
for him to loss in payoff, especially when the noise is strong.
Therefore, in a realistic uncertain world, extorting others has
the potential to cause damage to oneself.

VI. CONCLUSION AND DISCUSSION

The concept of the ZD strategy has become a promising
framework to explore long-run relationships. However, outside
of the laboratory, the existence of noise in the environment
elevates the complexity of games and payoff-oriented ZD
strategy selection in such games deserves more concrete
analysis. We established the generalized form of the ZD
strategy for noisy games and named it the NZD strategy.
We identify three specifications of NZD strategies, namely
the pinning strategies, dominant extortion, and contingent
extortion. We also studied the conditions, feasible regions, and
corresponding payoffs for these strategies. It is found that NZD
strategies have high robustness against noise and widely exist
in noisy games with reasonable noise strength, although the
noise has a negative impact on the existence and performance
of NZD strategies. The noise will expose the NZD player to
uncertainty and risk; however, it is still possible for him to set
the opponent’s payoff to a fixed value or to extort the opponent.

The implementation of the NZD strategies relies on the
existence of the unique stationary distribution. However, not
only the existence of noise but also some special strategies
may result in bad circumstances such that the regularity of
the Markov matrix cannot be satisfied or the Markov process
may not converge to a unique stationary distribution. Thus
it is essential to analyze the convergency of the Markov
process of the game. This is not only important to ZD or
NZD strategies but also a key problem for other topics in
repeated games. When multiple stationary distribution exists,
the Markov process may have multiple converging states,
which belong to different communicating classes. In this case,
the expected payoff of each player is strongly affected by the
initial state of the game. We conjecture that, in a game with
multiple stationary distribution, a generalized NZD strategy
whose expected payoff is engaged with initial distribution
may still exist. Moreover, the speed for the Markov process to
converge is a key factor for the NZD player. The second-largest
eigenvalue of a Markov transition matrix is a convenient factor

to determine which strategy of the NZD player may lead the
game to converge faster. Although the converging speed is
not unilaterally determined by the NZD player, he can at
least secure himself with a maximized lower boundary of the
converging speed.

Another condition for extortion under uncertainty is that
the NZD player should know the error distribution. This is
a common assumption in the literature about noisy repeated
games. The modeling in this paper is also based on such an
assumption. In particular, when both players know the error
distribution, the long-run relationship and the decision making
involve complicated reinforcement learning and statistical
inference. In this case, the historical information of the game
can be utilized for a player to determine what he is going
to do to improve his or long-term payoffs, and this can
become increasingly more complex as time goes by [19].
On the one hand, as long as the NZD player is aware of the
error distribution, he can efficiently launch the NZD strategies
and enforce a linear relationship between the two players’
payoffs, regardless of the opponent’s strategy. However, the
NZD player can make a further step and learn the pattern of the
opponent’s behavior by utilizing the known error distribution.
We have proved that dominant extortion does not exist in noisy
games and that the NZD player may have a small risk of losing
even he can control the payoffs of the opponent. Learning the
pattern of the opponent’s strategy will help the NZD player
to intelligently alter his strategy under different circumstances
and avoid such a risk. On the other hand, even if the opponent
knows the error distribution, as long as he does not learn the
NZD strategy, it is very likely that he will be distracted by the
NZD player. However, if his learning is sufficient and he is
capable of identifying the NZD player’s strategy, he may take
advantage of the risk of the NZD player and accordingly design
his strategy, resulting in a winning situation under uncertainty.

Furthermore, the original ZD strategies do not necessarily
promote cooperation, since the Markov process does not surely
converge to a joint state CC. When the repeated game is
played in an imperfect environment, this becomes even more
severe. The generous strategies [8] not only guarantee a linear
relationship between two players’ payoffs but also ensure that
the mutual cooperation payoff is the maximum payoff to both
the ZD player and the opponent. Generosity comes at a cost,
but it finally encourages everybody to cooperate. Although the
generous strategies are proved to be very robust in the perfect
environment, whether it exists and how it performs in the noisy
environment still need investigation. In particular, how can we
provide a strategy that makes the game always converge to the
mutual cooperation state, even when the noise has disturbances
during mutual cooperation? Actually, this topic is strongly
related to the equilibrium analysis in repeated games with
private monitoring, which is the one of the most well-known
long-standing open problems in game theory research [19].
The framework of NZD strategies may potentially provides us
with another possible direction to tackle this issue.
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