

FIVE RULES FOR THE EVOLUTION OF COOPERATION

Martin A. Nowak

OUTLINE

- Natural selection
- Kin selection
- Direct reciprocity
- Indirect reciprocity
- Network reciprocity
- Group selection
- Mathematical framework

NATURAL SELECTION

- A cooperator is someone who pays a cost, c, for another individual to receive a benefit, b.
- A defector has no cost and does not deal out benefits.
- Cost and benefit are measured in terms of fitness.

PRISONERS' DILEMMA

i cooperators and N – i defectors

• $f_C = [b(i - 1)/(N - 1)] - c$

• $f_D = bi/(N - 1)$

KIN SELECTION

"I will jump into the river to save two brothers or eight cousins."

–J.B.S. Haldane, 1930s

the coefficient of relatedness, r, must exceed the costto-benefit ratio of the altruistic act:

r > c/b

DIRECT RECIPROCITY

- It is unsatisfactory to have a theory that can only explain cooperation among relatives.
- repeated Prisoner's Dilemma (repeated encounters between the same two individuals)

tit-for-tat

- generous-tit-for-tat (cooperates although you have defected with probability 1 c/b)
- win-stay, lose-shift

 Direct reciprocity can only lead to the evolution of cooperation if the probability, w, of another encounter between the same two individuals exceeds the cost-tobenefit ratio of the altruistic act:

w > c/b

INDIRECT RECIPROCITY

 Direct reciprocity relies on repeated encounters between the same two individuals, and both individuals must be able to provide help.

- Randomly chosen, pairwise encounters, where the same two individuals need not meet again.
- One individual acts as donor the other as recipient.
 The donor can decide whether or not to cooperate.
- Indirect reciprocity can only promote cooperation if the probability, q, to know someone's reputation exceeds the cost-to-benefit ratio of the altruistic act:

q > c/b

NETWORK RECIPROCITY

- A cooperator pays a cost, c, for each neighbor to receive a benefit, b.
- Defectors have no costs, and their neighbors receive no benefits.
- The benefit-to-cost ratio must exceed the average number of neighbors, k, per individual:

b/c > k

GROUP SELECTION

- Cooperators help others in their own group. Defectors do not help.
- Individuals reproduce proportional to their payoff.
- Offspring are added to the same group.
- If a group reaches a certain size it can split into two.

- only individuals reproduce, but selection emerges on two levels.
- In particular, pure cooperator groups grow faster than pure defector groups, while in any mixed group defectors reproduce faster than cooperators.
- if n is the maximum group size and m the number of groups, then group selection allows evolution of cooperation provided

b/c > 1+n/m

Smaller group sizes and larger numbers of groups favor cooperators

MATHEMATICAL FRAMEWORK

$\begin{array}{ccc} C & D \\ C & \left(\begin{array}{ccc} \alpha & \beta \\ D & \left(\begin{array}{ccc} \gamma & \delta \end{array}\right) \end{array}\right) \end{array}$		A (Defectors dominate
		в	Cooperators are ESS
		с	Cooperators are RD
$\alpha > \gamma$	evolutionarily stable strategy (ESS)	D	1/2
$\alpha + \beta > \gamma + \delta$	risk-dominant (RD)	(
$\alpha + 2\beta > \gamma + 2\delta$	advantageous (AD)	E	Cooperators dominate Cooperators dominate Frequency of cooperators

D

D

D

D

D

0

Payoff matrix		Cooperation is			
		ESS	RD	AD	
Kin selection	$\begin{array}{ccc} C & D \\ C & (b-c)(1+r) & br-c \\ D & b-rc & 0 \end{array}$	$\frac{b}{c} > \frac{1}{r}$	$\frac{b}{c} > \frac{1}{r}$	$\frac{b}{c} > \frac{1}{r}$	rgenetic relatedness
Direct reciprocity	$ \begin{array}{ccc} C & D \\ C & (b-c) / (1-w) & -c \\ D & b & 0 \end{array} $	$\frac{b}{c} > \frac{1}{w}$	$\frac{b}{c} > \frac{2-w}{w}$	$\frac{b}{c} > \frac{3 - 2w}{w}$	wprobability of next round
Indirect reciprocity	$ \begin{array}{ccc} C & D \\ C & b-c & -c(1-q) \\ D & b(1-q) & 0 \end{array} $	$\frac{b}{c} > \frac{1}{q}$	$\frac{b}{c} > \frac{2-q}{q}$	$\frac{b}{c} > \frac{3 - 2q}{q}$	qsocial acquaintanceship
Network reciprocity	$\begin{array}{ccc} C & D \\ C & b - c & H - c \\ D & b - H & 0 \end{array}$	$\frac{b}{c} > k$	$\frac{b}{c} > k$	$\frac{b}{c} > k$	<i>knumber of neighbors</i> $H = \frac{(b-c) k - 2c}{(k+1) (k-2)}$
Group selection	$C \qquad D$ $C \qquad (b-c)(m+n) \qquad (b-c)m-cn$ $D \qquad bn \qquad 0$	$\frac{b}{c} > 1 + \frac{n}{m}$	$\frac{b}{c} > 1 + \frac{n}{m}$	$\frac{b}{c} > 1 + \frac{n}{m}$	<i>n</i> group size <i>m</i> number of groups

THANKS