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ABSTRACT

Motivation: The identification of drug–target interaction (DTI) repre-

sents a costly and time-consuming step in drug discovery and design.

Computational methods capable of predicting reliable DTI play an im-

portant role in the field. Recently, recommendation methods relying on

network-based inference (NBI) have been proposed. However, such

approaches implement naive topology-based inference and do not

take into account important features within the drug–target domain.

Results: In this article, we present a new NBI method, called domain

tuned-hybrid (DT-Hybrid), which extends a well-established recom-

mendation technique by domain-based knowledge including drug

and target similarity. DT-Hybrid has been extensively tested using

the last version of an experimentally validated DTI database obtained

from DrugBank. Comparison with other recently proposed NBI meth-

ods clearly shows that DT-Hybrid is capable of predicting more

reliable DTIs.

Availability: DT-Hybrid has been developed in R and it is available,

along with all the results on the predictions, through an R package at

the following URL: http://sites.google.com/site/ehybridalgo/.
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1 INTRODUCTION

Detecting and verifying new connections among drugs and tar-

gets is a costly process. From a historical point of view, the

pharmaceutical chemist’s approach has been commonly focused

on the development of compounds acting against particular

families of ‘druggable’ proteins (Yildirim et al., 2007). Drugs

act by binding to specific proteins, hence changing their bio-

chemical and/or biophysical activities, with many consequences

on various functions. Furthermore, because proteins operate as

part of highly interconnected cellular networks (i.e. the interac-

tome networks), the ‘one gene, one drug, one disease’ paradigm

has been challenged in many cases (Hopkins, 2008). For this

reason, the concept of polypharmacology has been raised for

those drugs acting on multiple targets rather than a single one

(Hopkins, 2008). These polypharmacological features of drugs

bring a wealth of knowledge and enable us to understand drug

side effects or find their new uses, namely, drug repositioning

(Ashburn and Thor, 2004; Boguski et al., 2009).
Nevertheless, many interactions are still unknown, and given

the significant amount of resources needed for in situ experimen-

tation, it is necessary to develop algorithmic methodologies
allowing the prediction of new and significant relationships

among elements interacting at the process level.
In the literature, several computational tools have been pro-

posed to afford the problem of DTI prediction and drug
repositioning.

Traditional methods rely either on ligand-based or receptor-
based approaches. Among ligand-based methods, we can cite

quantitative structure-activity relationships, and a similarity

search-based approach (Gonzalez-Daz et al., 2011; Keiser
et al., 2007). On the other hand, receptor-based methods, such

as reverse docking, have also been applied in drug–target (DT)

binding affinity prediction, DTI prediction and drug reposition-
ing (Ashburn and Thor, 2004; Li et al., 2006; Xie et al., 2011).

However, the latter have the shortcoming that cannot be used for

targets whose 3D structures are unknown.
Recently, much attention has been devoted to network-based

and phenotype-based approaches. Most of these methods rely on
the successful idea of using bipartite graphs.

In Yildirim et al. (2007), a bipartite graph linking US Food
and Drug Administration-approved drugs to proteins by DT

binary associations is exploited. Campillos et al. (2008) identified
new DTIs using side effect similarity.

Iorio et al. (2010) make use of transcriptional responses, pre-
dicted and validated new drug modes of action and drug repos-

itioning. Recently, Dudley et al. (2011) and Sirota et al. (2011)

have presented drug repositioning methods exploiting public
gene expression data. Furthermore, Yamanishi et al. (2008) de-

veloped a bipartite graph learning method to predict DTI by

integrating chemical and genomic data.
Cheng et al. (2012) present a technique based on network-based

inference (NBI) implementing a naive version of the algorithm
proposed by Zhou et al. (2007). All these results clearly show

the good performance of this approach. On the other hand, know-

ledge about drug and protein domain is not properly exploited.
van Laarhoven et al. (2011) use a machine learning method

starting from a DTI network to predict new ones with high ac-
curacy. The calculation of the new interactions is done through

the regularized least squares algorithm. The regularized least
squares algorithm is trained using a kernel (GIP—Gaussian

interaction profile) that summarizes the information in the net-

work. The authors developed variants of the original kernel by*To whom correspondence should be addressed.
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taking into account chemical and genomic information. This im-
proved the accuracy, in particular for small datasets.
Chen et al. (2012) introduced their Network-based Random

Walk with Restart on the Heterogeneous network (NRWRH)

algorithm predicting new interactions between drugs and targets
by means of a model based on a random walk with a restart in a

‘heterogeneous’ network. The model is constructed by extending
the network of DTI interactions with drug–drug and protein–pro-

tein similarity networks. This methodology shows excellent per-
formance in predicting new interactions. However, its

disadvantage is due to its random nature, mainly caused by the
initial probabilities selection.

Mei et al. (2013) proposed the Bipartite Local Model-
Interaction-profile Inferring (BLM-NII) algorithm. Interactions

between drugs and targets are deduced by training a classifier
(i.e. support vector machine or regularized least square). This is

achieved by exploiting interaction information, drug and target

similarities. This classifier is appropriately extended to include
knowledge on new drug/target candidates. This is used to predict

the new target probability of a specific drug. The algorithm is
highly reliable in predicting interactions between new drug/target

candidates. On the other hand, its capability of training several
distinct classifiers to obtain the final model is not strong enough.

In this present article, we propose a novel method called do-
main tuned-hybrid (DT-Hybrid). It extends the NBI algorithm

proposed in Zhou et al. (2007) and applied in Cheng et al.
(2012) by adding application domain knowledge. Similarity

among drugs and targets is plugged into the model. Despite its
simplicity, the technique provides a complete and functional

framework for in silico prediction of drug and target relationships.

To demonstrate the reliability of the method, we conducted a wide
experimental analysis using four benchmark datasets drawn from

DrugBank. We compared our method with the one proposed by
Chen et al., 2012. The experiments clearly show that DT-Hybrid

overcomes the problems shown by the naive NBI algorithm, and it
is capable of producing higher quality predictions.

2 METHODS

2.1 Algorithm

The method we propose is based on the recommendation technique pre-

sented by Zhou et al. (2007) and extended by Zhou et al. (2010). Let

X ¼ x1,x2, . . . ,xmf g be a set of small molecules (i.e. biological com-

pounds, molecules), and T ¼ t1, t2, . . . , tnf g a set of targets (i.e. genes,

proteins); the X-T network of interactions can be described as a bipartite

graph G X,T,Eð Þ where E ¼ eij : xi 2 X, tj 2 T
� �

. A link between xi and tj
is drawn in the graph when the structure xi is associated with the target tj.

The network can be represented by an adjacency matrix A ¼ aji
� �

n�m
,

where aji ¼ 1 if xi is connected to tj; otherwise, aji ¼ 0.

Zhou et al. (2010) proposed a recommendation method based on the

bipartite network projection technique implementing the concept of re-

sources transfer within the network. Given the bipartite graph defined

above, a two-phase resource transfer is associated with one of its projec-

tions: at the beginning, the resource is transferred from nodes belonging

to T to those in X, and subsequently the resource is transferred back to

the T nodes. This process allows us to define a technique for the calcu-

lation of the weight matrix (W ¼ wij

� �
n�n

) in the projection as follows:

wij ¼
1

� i, jð Þ

Xm
l¼1

ailajl
k xlð Þ

, ð1Þ

where � determines how the distribution of resources takes place in the

second phase, and k xð Þ is the degree of the x node in the bipartite network.

By varying the � function, we obtain the following algorithms (Table 1):

� NBI, introduced by Zhou et al. (2007) and used by Cheng et al.

(2012) for the prediction of the interactions between drugs and

proteins;

� HeatS, introduced by Zhou et al. (2010);

� Hybrid NþH, introduced by Zhou et al. (2010), in which the func-

tions defined in NBI and HeatS are combined in connection with a

parameter called �;

� DT-Hybrid, introduced here, is an enhanced version of the Hybrid

algorithm in which previous domain-dependent biological know-

ledge is plugged into the model through a similarity matrix.

Given the weight matrixW and the adjacency matrix A of the bipartite

network, it is possible to compute the recommendation matrix

R ¼ rij
� �

n�m
by the product:

R ¼W � A: ð2Þ

For each xi in X, its recommendation list is given by the set

Ri ¼ tj, rji
� �

j aji ¼ 0
� �

, where rji is the ‘score’ of recommending tj to xi.

This list is then sorted in a descending order with respect to the score

because the higher elements are expected to have a better interaction with

the corresponding structure.

Notice that the method described above does not make use of any

previous biological knowledge of the application domain. Here we pro-

pose the DT-Hybrid algorithm, which extends the recommendation

model by introducing: (i) similarity between small molecules (i.e. molecu-

lar compounds), and (ii) sequence similarity between targets.

Let S ¼ sij
� �

n�n
be the target similarity matrix [i.e. either BLAST bits

scores (Altschul et al., 1990) or Smith-Waterman local alignment scores

(Smith and Waterman, 1981)]. This information can be taken into ac-

count by using equation (1) with � i, jð Þ defined as in row 4 of Table 1.

Including structural similarity requires more effort. Therefore, it is neces-

sary to manipulate such information to obtain a variant of the S matrix,

and simplify the computation of the equation (1).

Let S1 ¼ s0ij

n o
m�m

be the structure similarity matrix [i.e. SIMCOMP

similarity score (Hattori et al., 2003) in the case of compounds]. It is

possible to obtain a matrix S2 ¼ s00ij

n o
n�n

(where each element s00ij describes

similarity between ti and tj based on the common interactions in the

network weighted by compound similarity) by putting:

s00ij ¼

Pm
k¼1

Pm
l¼1 ailajks

0
lk

� �
Pm

k¼1

Pm
l¼1 ailajk
� � : ð3Þ

This matrix can be linearly combined with the target similarity matrix S,

Sð1Þ ¼ �Sþ 1� �ð ÞS2, ð4Þ

where � is a tuning parameter.

This additional biological knowledge yields faster computation and

higher numerical precision. The matrix defined by equation (4) in

Table 1. List of algorithms with the associated � functions

Algorithm � Function

(1) NBI (Zhou et al., 2007) � i, jð Þ ¼ k tj
� �

(2) HeatS (Zhou et al., 2010) � i, jð Þ ¼ k tið Þ

(3) Hybrid NþH (Zhou et al., 2010) � i, jð Þ ¼ k tið Þ
1��k tj

� ��
(4) DT-Hybrid � i, jð Þ ¼ k tið Þ

1��k tj
� ��� �

=sij
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connection with equations (1) and (2) allows the prediction of recommen-

dation lists.

2.2 Datasets and benchmarks

We evaluated our method using four datasets (Cheng et al., 2012) con-

taining experimentally verified interactions between drugs and genes. We

analyzed the performances of NBI [equation (1) using �(i,j) in Table 1,

row 1], Hybrid [equation (1) using �(i,j) in Table 1, row 3] and DT-

Hybrid [equation (1) using �(i,j) in Table 1, row 4].

The datasets were built by grouping all possible interactions between

genes and drugs (DTI) based on their main gene types: enzymes, ion

channels, G-protein coupled receptors (GPCRs) and nuclear receptors

(Table 2). The following similarity measures have been used: (i)

SIMCOMP 2D chemical similarity of drugs (Hattori et al., 2003), and

(ii) Smith-Waterman sequence similarity of genes (Smith and Waterman,

1981).

Similarities have been normalized according to Yamanishi et al. (2008):

Snorm i, jð Þ ¼
S i, jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S i, ið Þ � S j, jð Þ
p : ð5Þ

Results are evaluated by combining the methods presented by Zhou

et al. (2010) and Cheng et al. (2012). More precisely, we applied a 10-fold

cross-validation and repeated the experiments 30 times.

Notice that, the random partition used in the cross-validation could

cause isolation of nodes in the network on which the test is performed.

Because all the tested algorithms are capable of predicting new inter-

actions only for drugs and targets for which we already have some infor-

mation, we computed the partition so that for each node, at least one link

to the other nodes remains in the test set.

According to Zhou et al. (2010), the following four metrics were con-

sidered: precision and recall enhancement, recovery, personalization and

surprisal.

Precision and Recall Enhancement, eP Lð Þ and eR Lð Þ. Quality is mea-

sured in terms of the top L elements in the recommendation list of each

biological structure. Let Di be the number of deleted interactions re-

covered for drug i, and let DiðLÞ be its position in the top L places of

i’s recommendation list. The average precision and recall for the predic-

tion process can be computed as follows:

P Lð Þ ¼
1

m0

Xm0

i¼1

Di Lð Þ

L
, ð6Þ

R Lð Þ ¼
1

m0

Xm0

i¼1

Di Lð Þ

Di
, ð7Þ

where m0 is the number of structures with at least one deleted link. A

better perspective can be obtained by considering these values within

random models Prand Lð Þ and Rrand Lð Þ.

If the structure i has a total of Di deleted interactions, then

Pi
rand Lð Þ ¼ Di= n� k ið Þð Þ � Di=n [given that n� k ið Þ]. Consequently,

averaging for all structures we obtain Prand Lð Þ ¼ D=n �m, where D is

the number of links in the test set. On the other hand, the average

number of links deleted in the first L positions is given by

LDi= n� k ið Þð Þ � LDi=n. Again by averaging for all structures,

Rrand Lð Þ ¼ L=n. Given these random models, it is possible to compute

the precision and recall enhancement as follows:

eP Lð Þ ¼
P Lð Þ

Prand Lð Þ
¼ P Lð Þ �

n � m

D
, ð8Þ

eR Lð Þ ¼
R Lð Þ

Rrand Lð Þ
¼ R Lð Þ �

n

L
: ð9Þ

Finally, as opposed to the recommendation on social systems, the three

other metrics—recovery, personalization and surprisal—are not so sig-

nificant in drug–target systems. For this reason, we report the details of

such metrics (their definitions together with the experimental results), just

for completeness, in the Supplementary Materials.

3 RESULTS

In this article, we propose a method called DT-Hybrid, which

extends NBI (Cheng et al., 2012; Zhou et al., 2007) and the

Hybrid (Zhou et al., 2010) algorithms by integrating previous

domain-dependent knowledge. Experiments show that this ex-

tension improves both algorithms in terms of prediction of new

biologically significant interactions. In the supporting materials,

we report a comprehensive analysis of DT-Hybrid and Hybrid,

together with their behavior varying the � (only for DT-Hybrid)

and � parameters. Table 3 illustrates the result of comparing

NBI, Hybrid and DT-Hybrid in terms of precision and recall

enhancement. DT-Hybrid clearly outperforms both NBI and

Hybrid in recovering deleted links. It is important to point out

that hybrid algorithms are able to significantly improve recall

(eR) measuring the prediction ability of recovering existing inter-

actions in a complex network. Figure 1 illustrates the receiver

operating characteristic (ROC) curves calculated over the com-

plete DrugBank dataset. Simulations were executed 30 times, and

the results were averaged to obtain a performance evaluation.

Experiments show that all three techniques have a high true-

positive rate against a low false-positive rate. However, hybrid

algorithms provided better performance than NBI. In particular,

Table 3 clearly shows an increase of the average areas under the

ROC curves (AUC) in the complete dataset (a detailed analysis

can be found in the supporting materials section). This indicates

that hybrid algorithms improve the ability of discriminating

Table 2. Description of the dataset: number of biological structures, tar-

gets and interactions together with a measure of sparsity

Dataset Structures Targets Interactions Sparsity

Enzymes 445 664 2926 0.0099

Ion channels 210 204 1476 0.0344

GPCRs 223 95 635 0.0299

Nuclear receptors 54 26 90 0.0641

Complete DrugBank 4398 3784 12 446 0.0007

Note: The sparsity is obtained as the ratio between the number of known inter-

actions and the number of all possible interactions.

Table 3. Comparison between DT-Hybrid, Hybrid and NBI

Algorithm eP 20ð Þ eR 20ð Þ AUC 20ð Þ

NBI 538.7 55.0 0.9619� 0.0005

Hybrid 861.3 85.7 0.9976� 0.0003

DT-Hybrid 1141.8 113.6 0:9989� 0:0002

Note: For each algorithm the complete DrugBank dataset was used to compute the

precision and recall metrics, and the average area under ROC curve (AUC). The

parameters used to obtain the following results are � ¼ 0:7, and � ¼ 0:8. Values are

obtained using the top-20 predictions. Bold values represents best results.
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known links from predicted ones. The increase of the AUC

values for the DT-Hybrid algorithm demonstrates that adding

biological information to prediction is a key choice to achieve

significant results. Table 4 demonstrates that exploiting biolo-

gical information leads, in most cases, to a significant increase

of the adjusted precision and recall. Figure 2 illustrates the ROC

curves calculated on the enzymes, ion channels, GPCRs, and

nuclear receptor datasets using the top-30 predictions. Finally,

it can be asserted that adding similarity makes prediction more

reliable than an algorithm, such as NBI, which applies only net-

work topology to score computation. Indeed, using only known

interactions of a new structure without any target information

makes it impossible to predict new targets for this drug. This

weakness is a problem for all methods based on recommendation

techniques. The introduction of new biological structures is

equivalent to the addition of isolated nodes in the network,

whose weight, based on the equation (1), is always zero. Such

a weight, ultimately, leads to the impossibility of obtaining a

prediction for this new molecule.
Another important feature of the DT-Hybrid algorithm that

we would like to highlight is its ability of increasing performance

by keeping computational complexity acceptable. The asymp-

totic complexity of the NBI algorithm is O n2m
� �

, whereas

that of DT-Hybrid is O n2 mþm2
� �� �

. However, parallelization

and optimization techniques can be easily applied to speed

computation.

We investigated the dependence of DT-Hybrid prediction

quality with respect to the � and � parameters (see the support-

ing materials for the details). Results show that we cannot dis-

cern a law that regulates the behavior of the metrics based on the

values of these parameters. They depend heavily on the specific

characteristics of each dataset, and therefore require a priori ana-

lysis to select the best ones. In the reported results, we made such

analysis before to run our experiments to establish the param-

eters yielding the best results in terms of precision and recall

enhancement.
Finally, notice that our analysis has shown an increase in the

precision, recall and AUC, neglecting other metrics, such as re-

covery, personalization and surprisal. This was done because the

latter measure only the capability of analyzing the structure of an

interaction network without evaluating the biological signifi-

cance of predictions.

4 CONCLUSION

DT-Hybrid is a technique proposed for the prediction of

new interactions between small molecules. Thanks to the

domain-dependent additional knowledge, it clearly outperforms

the NBI algorithm for DTI prediction. DT-Hybrid integrates

biological knowledge and the bipartite interaction network into

a unified framework. This yields high quality and consistent

interaction prediction, allowing a speedup of the experimental

Fig. 1. Comparison between DT-Hybrid, Hybrid, and NBI by means of receiver operating characteristic (ROC) curves, computed for the top-L places of

the recommendation lists, which were built on the complete DrugBank dataset

Table 4. Comparison of DT-Hybrid, Hybrid, and NBI through the precision and recall enhancement metric, and the average area under ROC curve

(AUC) calculated for each of the four datasets listed in Table 2

Precision enhancement [eP 20ð Þ] Recall enhancement [eR 20ð Þ] Area Under Curve for the top-20 predictions [AUC 20ð Þ]

Data set NBI Hybrid DT-Hybrid NBI Hybrid DT-Hybrid NBI Hybrid DT-Hybrid

Enzymes 103.3 104.6 228.3 19.9 20.9 32.9 0:9789� 0:0007 0:9982� 0:0002 0:9995� 0:0001

Ion channels 22.8 25.4 37.0 9.1 9.7 10.1 0:9320� 0:0046 0:9929� 0:0008 0:9973� 0:0006

GPCRs 27.9 33.7 50.4 7.5 8.8 5.0 0:9690� 0:0015 0:9961� 0:0007 0:9995� 0:0006
Nuclear receptors 28.9 31.5 70.2 0.3 1.3 1.3 0:9944� 0:0007 0:9986� 0:0004 1:0000� 0:0000

Note: The results were obtained using the optimal values for � and � parameters as shown in the supporting materials. We set for both Hybrid and DT-Hybrid � ¼ 0:5.

Concerning the� parameter, wehave the following setting: enzymes� ¼ 0:4; ion channels� ¼ 0:3;GPCRs� ¼ 0:2; nuclear receptors� ¼ 0:4. Bold values represents best results.

2007
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verification activity. Finally, thanks to the hybrid approach, the

algorithm overcomes numerical instability that we experienced in

the NBI algorithm in presence of particular datasets (i.e. highly

sparse).
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