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Abstract. We introduce the role of resampling and prediction (p) metrics for
flexible discriminant modeling in neuroimaging, and highlight the importance of
combining these with measurements of the reproducibility (r) of extracted brain
activation patterns. Using the NPAIRS resampling framework we illustrate the use
of (p, r) plots as a function of the size of the principal component subspace (Q) for
a penalized discriminant analysis (PDA) to: optimize processing pipelines in func-
tional magnetic resonance imaging (fMRI), and measure the global SNR (gSNR)
and dimensionality of fMRI data sets. We show that the gSNRs of typical fMRI
data sets cause the optimal Q for a PDA to often lie in a phase transition region
between gSNR ' 1 with large optimal Q versus SNR � 1 with small optimal Q.
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1 Introduction

Mapping of brain function is a major area of brain imaging. In the 1980s it
was dominated by positron emission tomography (PET) and single photon
emission tomography (SPECT) but since the discovery of the blood oxy-
genation level dependent (BOLD) signal in the 1990’s, BOLD functional
magnetic resonance imaging (fMRI) and related techniques now dominate
the brain imaging literature. The early PET-based applications used some
machine learning and neural networks techniques for the analysis of func-
tional neuroimages, but most the current fMRI experimental and analysis
paradigms are still based on simple univariate general linear models with
inferential statistical tests, and in some instances their predictive, machine
learning equivalent (e.g., Gaussian Näıve Bayes, Kjems et al. (2002); Pereira
et al. (2009)). However, there has been a recent explosion of interest in us-
ing related multivariate classification approaches—dubbed “mind reading”
by some.

2 Data-driven performance metrics

In brain mapping it is crucial to optimize and evaluate models and to select
the most salient features. These tasks must be guided by a performance met-
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ric. A variety of possible performance metrics including crossvalidated pre-
diction (p) are briefly reviewed in Afshinpour et al. (in press). Although pre-
diction accuracy alone can be an effective metric for general machine-learning
problems, neuroimaging also demands that the spatial pattern (encoded by
the predictive model) be reproducible (r) or generalizable between different
groups of subjects or different scans of the same subject. The reproducibil-
ity of models’ estimated parameters when optimizing prediction in such ill-
posed data sets (variables � observations) is a neglected issue in the field
of predictive modeling. In some problems this is unimportant as prediction
performance may be the primary result that matters (Schmah et al. 2008).
However, in high-dimensional brain mapping problems the reliability of the
extracted brain maps and the voxels that influence prediction performance
are often the critical outputs of the modeling process that reflects underlying
brain processes. One approach is to include a greedy search procedure be-
cause this reduces the size of the voxel feature space to the subset relevant for
prediction. This may be iteratively driven by prediction metrics using classi-
cal machine learning approaches or simply based on a subset of voxels that
are detected with a separate voxel-based, general linear model (GLM). Some
tradeoffs of such purely prediction-driven analysis approaches are discussed
in Pereira et al. (2009). Together with prediction accuracy, reproducibility is
an important metric because it provides a data-driven substitute for receiver
operator characteristic (ROC) analysis. We also address model performance
in real data sets where the true SNR structure is unknown and ROC curves
cannot be measured. In particular, we illustrate the use of (p, r) metrics to
optimize the pipeline of image pre-processing steps for fMRI data sets before
data analysis, e.g., scan-to-scan registration, spatial and temporal filtering,
etc. (for a review see Strother (2006)). And we demonstrate the use of (p, r)
metrics to optimize subspace selection for a penalized discriminant analysis
(PDA) model built on a PCA basis.

3 Nonparametric, activation, influence and
reproducibility resampling (NPAIRS)

NPAIRS provides a resampling framework for combining prediction metrics
with the reproducibility of the brain-activation patterns, or statistical para-
metric maps (SPM), as a data-driven substitute for ROCs. However, any
measure of similarity between patterns extracted from independent data sets
is subject to an unknown bias (Afshinpour et al., in press). To obtain com-
bined prediction and reproducibility values Strother et al. (2002); Kjems et
al. (2002) proposed a novel split-half resampling framework dubbed NPAIRS
and applied it first to PET and later to fMRI (see Strother et al. (2004);
LaConte et al. (2003); Yourganov et al., in press). While NPAIRS may be
applied to any analysis model we have focused on LDA built on a regularized
PCA basis (i.e., PDA). This allows us to (1) regularize the model by choosing
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soft (e.g., ridge) or hard thresholds on the PCA eigenspectrum or other basis
set (e.g., tensor product splines) (2) maintain the link to covariance decom-
position previously used with PET for elucidating network structures, and
(3) easily produce robust whole-brain activation maps useful for discovering
features of brain function and/or disease.

The basic outline of NPAIRS follows1. Consider an fMRI data set S of v
voxels byNT scans forN subjects’ data sets of T scans each. The independent
observations of N subjects are split into two independent halves S = [S1,S2]:
training and test sets of size N

2 . This split-half resampling represents a form
of repeated, 2-fold cross-validation that has the benefits of smooth, robust
metrics obtained with delete-d jackknife and the 0.632+ bootstrap (Efron
and Tibshirani (1993, 1997)). Typically in neuroimaging we have v � NT ,
with v = 10k − 100k voxels, and N = 10s of subjects and T = 50 − 100s of
scans/subject. Consequently S is large and ill-posed and cannot be directly
inverted. Therefore, we proceed with an initial dimensionality reduction step
using PCA that also serves as a preliminary denoising process. Further the
PCA ensures that we have captured at least the first order voxel interactions
that represent the important functional connectivity of underlying brain net-
works. We can obtain estimates of the PCA basis components needed using
a singular value decomposition (SVD) or equivalently from the eigenvalue
decomposition (EVD) of the smaller outer-product covariance matrix (which
is considerably faster than an SVD). We proceed as follows

1. Given the singular SVD, S = ULVT , we compute the EVD, ST S =
VL2VT , and proceed with a reduced basis set, X∗ = U∗T S = L∗V∗T ,
where we typically retain 30% of the PCA components so that X∗ has size
(0.3NT ×NT ), assuming v � NT .

2. Randomly partition X∗ into two independent split-half groups across
the subjects to obtain X∗ = [X1,X2] = U∗T [S1,S2], where Xi has size
(0.3NT ×N iT ), Ni = N/2 for N even, or Ni = N/2± 0.5 for N odd.

3. Given the SVD Xi = YiLiRT
i , we compute second-level EVDs X∗

i =
Y∗T

i Xi = L∗i R
T
i , on X1 and X2, and retain Q components from each, so

that X∗
i has size (Q× T i) where Ti =NiT . With Q typically ≤ min(2 −

500, 0.3NT ) we achieve a large dimensionality (and computational) reduc-
tion. For example from Strother et al. (2004) with N = 16, T = 187 scans
and v = 23,389 brain voxels, S is (23,389× 2992), but X∗

i is only Q× 1496,
and for PDA we only calculate (Q×Q) covariances with Q ≤ 500.

4. Now apply the prediction model separately to X∗
1 and X∗

2 using a scan-
label structure. This label structure may directly reflect the experimental
design (i.e., number of experimentally defined conditions or brain states),
or it may be chosen to reflect other possibilities, such as agnostic labels that
will extract an unknown but common, data-driven temporal-covariance across
subjects (e.g., Strother et al. (2004); Kustra and Strother (2001); Kjems et al.
(2002); Evans et al. (2010)). For the rest of this paper we focus on Canonical

1 Software available at http://code.google.com/p/plsnpairs/.
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Variates Analysis (CVA, Mardia et al. (1979)), which reflects a Gaussian
mixture model across classes with the strong regularization constraint that
all class covariances are equal and may therefore be estimated using a pooled,
within-class covariance estimate; this CVA is equivalent to LDA, although we
further regularize by calculating CVA on a subspace of size Q, as in a PDA
(Kustra and Strother (2001)). For g = 1, . . . , G classes, and k = 1, . . . ,Kg,
with Kg the number of scans in class g, let xgk represent a column of X∗

i

with Q component features of the kth scan in class g. We calculate,

Wi =
∑GKg

gk
(xgk − x̄g) (xgk − x̄g)

T (1)

Bi = Kg

∑G

g
(x̄g − x̄) (x̄g − x̄)T (2)

where x̄g = 1
Kg

∑Kg

k xgk is the mean of scans in class g, and x̄ = 1
Ti

∑GKg

kg xgk

is the mean over all scans in split-half X∗
i . The canonical variates that repre-

sent a penalized, generalized likelihood ratio solution of the G-class discrim-
inant problem are obtained by the following EVD:

W−1
i BiCi = CiMi (3)

where Ci has G − 1 columns of canonical variates, cj with dimension Q,
normalized such that CT

i (Wi/(T i−G))Ci = I, and Mi is a (G−1)×(G−1)
diagonal matrix containing eigenvalues, mj . From Ci we obtain PCA-like,
canonical-coordinate time series defined by

Zi = X∗T
i Ci (4)

where Zi hasG−1 columns of zj , with time-series dimension Ti, and zT
j zh = 0

where (j 6= h), and zT
j zj = (Ti −G)(1 +mj), since X∗

i X
∗T
i = Bi + Wi. The

associated canonical eigenimages are given by

Ei = U∗Y∗
i Ci (5)

where Ei has G− 1 columns ej with dimension v.
Prediction accuracy is defined as the posterior probability of a test-scan,

sgk(test), being assigned to its true class label, g, given by p
(
g|sgk(test); θtrain

)
,

where θtrain are model parameters calculated in an independent training set.
Assume the scans represented by the split-half set, X∗

1, form a training set
in which we calculate the PDA model parameters in Eqn. 5. The prediction
accuracy for scans in the test set, X∗

2, is given by

p
(
ggk(2)

∣∣ sgk(2);θ(1)
)

= 1
a exp

{
− 1

2

(
sgk(2) − s̄g(1)

)T
U∗Y∗

1W
−1
1 Y∗T

1 U∗T (sgk(2) − s̄g(1)

)}
p(ggk(2))

= 1
a′ exp

{
− 1

2

(
sgk(2) − s̄g(1)

)T
E1ET

1

(
sgk(2) − s̄g(1)

)}
p(ggk(2))
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from Eqn. 1 with C1CT
1 = (Ti−G)W−1

1 , (a and a′ are normalizing constants).
In practice we swap training and test sets and average across all scans to
obtain the average prediction value for a particular split-half.

Each independent split-half PDA produces a set of canonical eigenim-
ages, Ei, and canonical coordinate time series, Zi, which can have arbitrary
signs and component ordering. To address this before comparing the split-half
eigenimages we perform a PDA on the full data set S from step 1, without
splitting, using 2Q components from the 2nd-level EVD in steps 3 and 4.
This ZS result provides a reference set against which we compare each Zi set
of canonical-coordinate time series using a Procrustes matching procedure
restricted to sign changes and permutations of component order. The oper-
ations performed on the Zi components are then also performed on the Ei

components to match them across the spit-halfs. For a particular canonical
component, the reproducibility of the two split-half eigenimages is defined as
the correlation (r) between all pairs of the spatially aligned voxels. This cor-
relation value r is directly related to the available SNR in each extracted pair
of split-half SPMs. For transformed eigenimages of mean=0, and length=1,
the two eigenvalues are equal to 1 + r (signal) and 1 − r (noise). Therefore,
we define a global SNR metric for each split-half as

gSNR =
√

((1 + r)− (1− r)) /(1− r) =
√

2r/(1− r) (6)

Note that the Procrustes matching procedure is likely to make r positive
but that low-reproducibility components will still reflect the distribution of r
around 0. From Eqn. 6 we see that r maps the [0,∞] range of gSNR to [0, 1].
In general when the number of unique split-resamplings (i.e., 1

2

N
CN/2) is

large enough, we perform� 10 split-halfs and record the average, or median,
of the p and r distributions across for a particular choice of Q. This procedure
is then repeated as a function of Q to obtain the best (p, r) values possible as
a function of Q. We recognize that the resulting p-values are biased upwards
as a result of optimizing model parameters (i.e, Q) using only training and
validation sets, and then biased downwards, relative to leave-one-out cross-
validation, as a result of using split-half resampling. Finally, we obtain a
single Z-scored SPM from each split-half pair of eigenimages (i.e., rSPM(z)).
In the scatter plot used to calculate r we project all pairs of voxel values
onto the principal axis to obtain a consensus rSPM. These projected rSPM
values are then scaled by the pooled noise estimate, (1 − r), from the mi-
nor axis. As this noise estimate is uncorrelated by construction the resulting
rSPM(z) values will be approximately normally distributed; in practice this is
a good approximation for brain imaging. Finally, this procedure is robust to
heterogeneity across the split objects (e.g., subjects) as more heterogeneous
split-half pairs produce smaller r’s and larger (1− r) pooled noise estimates,
and thus lower rSPM(z) values than more homogeneous splits. Then we aver-
age all rSPM(z)’s to obtain a robust, consensus technique for Z-scoring any
prediction model that produces voxel-based parameter estimates.
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4 Measuring pipeline performance

Figure 1 plots NPAIRS (p, r) curves for an 11-class CVA of 2992 fMRI scans
from 16 subjects performing a static force task (Strother et al. (2004)). The
two curves reflect a small change in a single preprocessing step: the number
of half cosines used for removal of low-frequency trends in fMRI time series.
The points on the curves are the number of PCA components from 1 − Q
(Q ∈ {10, 25, 75, 100, 150, 200, 300, 500}). A full NPAIRS analysis with 50
split-halfs was run for each value of Q. In Figure 1 as the PDA parameteriza-
tion initially increases with Q, both p and r (i.e., gSNR(r)) initially increase.
Then at Q = 50, while p continues to slowly increase, r starts to decreases
quite rapidly. This appears to be a fundamental feature of predictive model-
ing in ill-posed neuroimaging data sets. with p typically being optimized at
larger values of Q than for optimal r, but both eventually decreasing. This
(p, r) tradeoff has also been demonstrated in the context of parameterization
of nonlinear hemodynamic models estimated using MCMC, with r replaced
by a Kullback-Leibler measure on posterior distributions (Jacobsen et al.
(2008)). The (p, r) plot provides a data-driven, ROC-like space where perfect
performance is represented by the upper-right-hand corner with perfect pre-
diction (p=1) and infinite gSNR (r = 1). For a given set of preprocessing steps
and parameters our goal is to move the (p, r) curve closer to (1, 1). As this is
a relative change we assume that the p-value bias is approximately constant
when measuring (p, r) curves that lie closer to (1, 1). We have been experi-
menting with using the minimum Euclidian distance from (1, 1) to define an
optimal (p, r) tradeoff and a cost function for processing-pipeline optimiza-
tion. In Fig. 1 if we generate (p, r) curves for each of the 16 subjects and
record their mean distance from (1, 1), M̄, then the change, 4M̄ , across the
16 subjects and their standard deviation may be used to judge improved pro-
cessing choices. In Fig. 1 we see that on average temporal detrending with a
1.5 cycle cosine will slightly improve (p, r) performance over using a 2.0 cycle
cosine.

Zhang et al. (2009) has explored this approach in the context of the same
fMRI data set with both a predictive GLM and two-class PDA analysis mod-
els (2c-CVA). Table 1 summarizes her greedy search results for the impact
of several pipeline processing steps. Slice-timing correction (Step 1) has no
significant impact regardless of analysis model. Within-subject motion cor-
rection (Step 2) significantly improves performance for 2c-CVA, but not for
GLM because of the increased inter-subject heterogeneity. As expected spa-
tial smoothing (Step 3), and high-pass temporal filtering (Step 4) of various
sorts, all significantly improve performance, but with quite different subject
heterogeneity depending on the analysis model and processing technique.
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Fig. 1. NPAIRS split-half prediction (p) vs. rSPM(z) reproducibility (r) for an
11-class PDA model as a function of Q, and for a small change in low frequency
temporal artefact removal: detrending with 1.5 vs. 2.0 cosine cycles per fMRI run.
(Data from Strother et al. (2004)).

Table 1. Average change in optimal (p, r) curve distance from (1, 1) (e.g., Fig. 1)
for turning selected fMRI processing steps on and off across 16 subjects performing
a parametric static force task (Zhang et al, (2008, 2009)). High-pass temporal fil-
tering: detrending ≡ removal of cosine cycles/run; 1Sliding window running means.
2Multi-Taper power spectrum. 3Wilcoxon matched-pair per subject rank sum test

5 Measuring dimensionality

We generated 18 separate (p, r) curves from the multi-task, age-dependent
data set acquired by Grady et al. (2006). The subjects belonged to three
different age groups: young, middle-aged, and old. The experiment consisted
of 6 separate task runs per subject of 4 memory encoding tasks (1-4), and
2 recognition tasks (5, 6). During the two recognition tasks, the subjects
reported whether or not they recognized the presented stimulus. The BOLD
fMRI was measured with a 1.5T MRI scanner. Standard image preprocessing
was applied to the data. For each subject, one run was collected for every
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Fig. 2. NPAIRS (p, r) curves for a group of young subjects performing memory
tasks: 1, 3, 4, 5. < Q is the regularizing PCA subspace of a PDA. (see text for
details).

task (89 volumes for encoding tasks, and 166 volumes for recognition tasks).
Each scan was described 50,308 voxels (for more details see Grady et al.).

Figure 2 shows example (p, r) curves for the 10 young subjects performing
Tasks 1, 3, 4 and 5 and analyzed with a 2-class PDA to discriminate task
from fixation scans. For each analysis the dimensionality of the 2nd-level
PCA subspace on which the PDA was built ranged from Q = 2 to Q = 84
(Encoding tasks), and Q = 168 (Recognition tasks). At the largest values of
Q, the PDA started to become unstable due to the large condition number
(> 1000) of the within-class matrix W.

The (p, r) curves in Fig. 2 display the same features as those in Fig. 1.
For small values of increasing Q, both p and r increase until r is maximized
at: Task 1, Q = 24; Task 3, Q = 24; Task 4, Q = 12; Task 5, Q = 12. In
all cases p continues to rise with increasing Q, but r rapidly decreases as p
is maximized at: Task 1, Q = 76; Task 3, Q = 66; Task 4, Q = 64; Task 5,
Q = 108. We recorded the 18 values of Q that separately maximized r, p,
and the Euclidean distance (M) from (1, 1). These 54 values are plotted as a
function of gSNR(r) in Figure 3. Here we see that dimensionality for optimum
r (circle) andM (cross) values are often very similar, and fall on a curve with a
vertical asymptote of gSNR ' 1 for q >> 1, and a horizontal asymptote with
Q ≤ 20 for gSNR ≥ 1.5. The horizontal asymptote with gSNR large enough
(e.g., > 1.5) indicates that signal and noise eigenvalues are well separated in
the eigenspectra of X∗

i (NPAIRS step 3), and occur in a relatively compact
discrete subspace early in the PCA eigenspectrum. Conversely, the vertical
asymptote indicates that as signal eigenvalues merge into the noise spectrum
a phase transition occurs requiring large numbers of components from which
to extract a discriminant signal, which is now relatively broadly distributed
across many components of the PCA eigenspectrum.

This behavior matches recent analytic results from random matrix the-
ory that indicate that such a phase transition occurs and is governed by the
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Fig. 3. For 18 NPAIRS (p, r) curves (Fig. 2) the PCA subspace size, Q, is plotted
against gSNR(r) for optimal (1) prediction “4”, (2) reproducibility “O,” and (3)
Euclidean distance “X” (see Fig. 1). (see text for details)

ratio of variables (i.e., voxels) to observations (i.e., scans) for a particular sig-
nal strength. We have recently compared measurement of Q, across simulated
and fMRI-data phase transitions with multiple dimensionality estimation ap-
proaches proposed in the literature (e.g., optimization of Bayesian evidence,
Akaike information criterion, minimum description length, supervised and
unsupervised prediction, and Stein’s unbiased risk estimator: Yourganov et
al., in press). None of the alternate approaches detect the phase transition in-
dicating that they are suboptimal to obtain activation maps with v >> NT .

Figure 3 shows that there is a shift of the distribution of Q values for
maximum prediction towards higher dimensionality at a gSNR value of ap-
proximately 1. This suggests that irrespective of the underlying signal eigen-
structure reflected in the possible gSNR (i.e., horizontal asymptote), optimal
prediction tends to select a smaller gSNR with a solution typically built from
a large number of PCA components. Examination of the associated rSPM(z)
for maximum prediction shows that the reduced gSNR is partly a result of
a reduced number of signal voxels (e.g., rSPM(z)> 3) compared to rSPM(z)
for optimal reproducibility. We are exploring the possibly that this reflects
the tendency for prediction to select low reliability voxel sets. It remains
an unresolved and important issue whether or not optimal prediction based
on preliminary voxel-based feature selection or recursive feature selection can
detect highly reliable spatial patterns in neuroimaging. Our PDA results sug-
gest that this may not be the case for linear multivariate models.
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